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Abstract

We make a new proposal about how to use in an effective way a CSPRBG (Com-
putationally Secure Pseudo Random Bit Generator) for cryptographic purposes. We
introduce the definitions of TCSPRBG (Typical CSPRBG) and SCSPRBG (Special
CSPRBG). In particular the definition of SCSPRBG synthetizes in a simple way
our proposal of how to modify a CSPRBG in order to achieve a higher throughput
rate, while retaining some essential features of its computational security.

We then summarize which should be, in our opinion, a "standard way" to use a
CSPRBG for cryptographic purposes. We eventually present as an application, a
particular SCSPRBG for which we can achieve throughput rates greatet@ban
Mbits/sec on current mobile devices.
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1 Introduction

In this paper we propose an encryption scheme based on a CSPRBG that we believe
has some innovative features.

It is well known that a CSPRBG can be used to communicate encrypted data.
In particular the computational work needed to ensure cryptographic security can be
carried out outside the temporal interval of encryption-decryption of data: in fact the
encryption-decryption phase consists of two xor with a same piece of the string produced
by CSPRBG, therefore its execution time is negligible. We describe this aspect saying
that the encryption method has an execution time with zero latency, just to highlight that
this scheme can be applied to real-time communications. Moreover it is clear that the
maximum rate allowed for communicationis only bounded by the throughput rate of the
CSPRBG. We can even replace the word &t cemaximuméat 7 with word &t ceaverageét 7
in the previous statement if we use some appropriate buffering algorithm.

We first take into account the existence of PRBGs for which security results have
been proved. In particular we consider RSAPRBG and QUAD, for which security results
have been proved in papers [RSA], [QUAD1], [QUAD?2]. In the paper [ARTICOLOZ2]
we carried out a Java software implementation of both these PRBGs putting in place
all knowledge and tricks we know, obtaining in both cases a throughput rate of several
Mbit/sec (see [], pagat)); such results seem to be better of the ones forecasted in [],
pagat | for RSAPRBG and somewhat not bed for QUAD, giving the results obtained in
[1, pagét for a hardware implementation of QUAD on a FPGA.

Such throughput rates, nevertheless, in our opinion are insufficient for some kind
of applications (namely encryption of audio/video data), since while they could be
improved by a hardware implementation, they are actually obtained used with CPU
load of 100

In order to obtain a faster variant of these CSPRBGs we introduce the definitions
of two particular classes of them, namely the class TCSPRBG that turns out to contain
both RSAPRBG and QUAD, and the class SCSPRBG; a PRBG belonging to this class
starts from a correspondent TCSPRBG and uses one more one-way function w as a
at.celocalakz expander of the bit stream, in order to obtain a higher throughput rate
while basically maintaining the same security (even if function w could be inverted in
some case, this does not compromise the security of the bit stream, see proposition X.X).



To give a precise idea of the throughput rates we can obtairconsider a particular
choice for the function w. We call it the &t.cepickat z function. Again paper [] provides
numerical results of a java software implementation of this function, seeét |.

In the final section we show how the inversion of the &t cepickat Z? function is the
inversion of a (very particular) quadratic system in GF(2). Moreover we also clarify
some relations between the at.cepickatz function and the function f used in QUAD.

Then we develop some strategies to invert the a&t.cepickatz function. We start from
the simplest ones or from some adaptation of known strategies for inversion of quadratic
systemsto our particular case, trying our best to exploit particularities of the &t cepickat 7
function to make them faster. The best time estimated for the inversion atcepickat
function seem to confirm that such inversion is practically not possible for the choice
of parameters we have chosenin [].

We anyway arenat. ™t able to obtain sharp lower bounds for the time needed for
inversion.

It seems to us however that the combined effect of proposition X.X and the estimated
times for the inversion of the &t.cepickatz function is that an SCSPRBG based on a
correspondent TCSPRBG given by RSAPRBG or QUAD coupled with the choice of
at.cepickat z function as w deserves some attention.

Organization. Section 2 contains notations and definitions. In the section 3 we
introduce the definitions of TCSPRBG and SCSPRBG along with some comments and
remarks. In the section 4 we describe the method; in the section 5 we discuss the
applications of the method on existing mobile devices.

2 Preliminary notations and definitions

Notation. We usé @ j to denote the bitwise xor of integerand; and|| to denote the
concatenation of two sequences.

2.1 One way function

There are some types of functions that play a significant roles in cryptography. One of
these types is the one way function. We adopt for our purposes the following definitions
of one-way function from[12].

Definition 2.1 (Strong one way function) A functigh: {0,1}" — {0, 1} withm =
O(n) is called (strongly) one way function if the following two condition hold:

1. Easy to compute: There exists a deterministic polynomial time algoritlsoch
that on input: algorithm A outputsf (z) (i.e. A(z) = f(x)).

2. Hard to invert: For every probabilistic polynomial time algorithrh every pos-

itive polynomialp(-) and all sufficiently large:’s,
PHAG(U) € £ (U] < 7o

whereU,, denotes a random variable uniformly distributed of@&r1 }".



Definition 2.2 (Weak one way function) A functigh: {0,1}" — {0,1}™ with m =
O(n) is called (weak) one way function if the following two condition hold:

1. Easy to compute: There exists a deterministic polynomial time algoritlsoch
that on inputX algorithmA outputsf(z) (i.e. A(x) = f(x)).

2. Slightly hard to invert: There exists a polynomié!) such that for every proba-
bilistic polynomial time algorithmA’ and all sufficiently large:’s:

/ . 1
PriA(f(Un)) & £~ (f(Un))] > )

2.2 Random bit generator

Definition 2.3 A random bit generator is an algorithm with outputs a sequence of sta-
tistically independent and unbiased binary digits.

Remark 2.1 It is possible to use a random bit generator to generate random numbers.
For example a integer number in the inter{@ln] can be obtained by generating a
random bit sequence of lengttvgan | + 1 and converting it to an integer.

A true random bit generator requires a naturally occurring source of randomness. It
is difficult to design a hardware device or software program that produces uncorrelated
bit sequences exploiting this randomness. Moreover this kind of generator is influenced
by external features so it must be periodically tested.

There are two kind of true random bit generator:

- hardware-based generator (that exploits the randomness which occurs in some
physical phenomena);

- software-based generator (that can be based on the system clock or on the content
of input/output buffers, and this is more difficult to design than previous).

2.3 Pseudo random bit generator

Definition 2.4 A pseudo-random bit generator (PRBG) is a deterministic algorithm
which, given a truly-random binary sequence of lengtbutputs a binary sequence of
lengthl >> k which appears to be random. The input to the PRBG is called seed and
the output is called a pseudo-random bit sequence.

The output to the PRBG is not random because the number of output sequences is
a small fraction2” /2 of all binary sequences of length

The idea is to consider a small truly-random sequence and to expand it in a longer
sequence. In this way a possible adversary can not easily distinguish between output
sequences of the PRBG and truly-random sequences of léngtherefore there are
statistical tests that represent necessary conditions but not sufficient so that a generator
may be secure. In fact it is impossible to prove mathematically that the output of a
generator is truly-random. Tests are probabilistic.



A minimum security condition for a random sequence geneisattirat the length
k of the random seed should be sufficiently large so that a searcRbedements is
infeasible for the adversary.

The seed must have two properties:

- the output sequence of PRGB must be statistically indistinguishable from the
truly-random sequence;

- output bits must be unpredictable by the adversary that has limited computational
resources.

We now have to specify what "appears to be random" main.

Definition 2.5 APRGB s said to pass all polynomial-time statistical tests, and therefore
can be considered as a cryptographic secure PRGB, if no polynomial-time algorithm
can distinguish between an output sequence of the generator and truly-random sequence
with probability significantly greater thaty 2.

Definition 2.6 A pseudo-random bit generator is said to pass the next-bit test if there is
no polynomial-time algorithm which, on input of the fiidbits of an output sequence
s, can predict thél + 1)t bit of s with probability significantly greater tha%q.

Remark 2.2 A pseudo-random bit generator passes the next-bit test if and only if it
passes all polynomial-time statistical tests.

Definition 2.7 A PRBG that passes the next-bit test (possibly under some plausible but
unproved mathematical assumption such as the intractability of factoring integers) is
called a cryptographically secure pseudo-random bit generator (CSPRBG).

3 Typical CSPRBG

Definition 3.1 A typical-CSPRBG (denoted with TCSPRBG) is defined as follows.
Computed the initial value, from a true random sead, after an initialization phase,
let f be an one-way invertible function agdbe an one-way not (invertible) function.
Compute:

Ti4+1 = ,f(ph ...,pk,xi) Vi = O, 1,

wherepy, ..., p;, are fixed and known parameters,
The output sequence to pseudo-random generator is:

s = y1lly2]]---

where|| denotes the concatenation.



The output sequence depend on the properties of the one-netjdm used therefore
it may be necessany; only keeps some bits of the output valugsn order to remove
possible correlation between successive values. Therefore the fupdsidypically a
projection.

Definition 3.2 The TCSPRBG inversion problemis the following: giveltyz||...||yn.,
find 2, 41.

Definition 3.3 The TCSPRBG partial inversion problemis the following: giwgfyz||...||yn.
find yy,4+1.

Remark 3.1 The idea behind previous definition is the following:

- ifwe adversaly solve the inversion problem definebly 3.2we clearly can predicted
all the future output of the PRBG, and the security in this case is completaly
broken;

- if we adversaly can solve for some valuesofbut not for everyn) the partial
inversion problem it can still predicted part of the future output of the PRBG and
security partial broken.

Remark 3.2 The "CS" in "TCSPRBG" stands for cryptographically secure. There can
not be an unconditioned proof of this feature (the same is true for the existence of a
one-way function, se¢ [12]). All existing security proof are conditioned to conjectures
of the following types:

- P#NP;
- on unsolvability of well known problems in less than a certain certain time.
Two examples of TCSPRBG we consider in the present thesis are:

- a variant of the Micali Schnorr RSA PRG studied by Steinfield, Pieprzyk and
Wang in [5];

- QUAD [9],[Z0].

The strategy that is followed to prove that such PRBGs are computational secure is
the following:

- anecessary premise to solve any inversion problem is that sequghge. ||y,
is distinguishable from a random sequence;

- if such sequence (for not too large) is distinguishable from a random sequence
then some well known hard problem could be solved more efficently than it is
actually known.

In order to give an idea of how secure these CSPRBG are, we report the statement
of the main security results obtained by these authors respectively for the RSA PRBG
and for the QUAD:



Theorem 3.1 For ath > 2°, any (T, d) distinguisherD for (n,e,r,1)-RSAPRG can
be converted into &7 N v, e7yv) inversion algorithmA for the (n, e, r, w)-CopRSA
problem (withw = 3log(2(/§) + 5) with:

Tinv = Cs(T + O(1/rlog(e)n?)) 1)

where:
Cs = 64(1/8)*nlog(n)

and:
EINV = 5/9 - 4/2n/2

Theorem 3.2 LeL = A(k — 1)n be the number of key-stream bits produced by in time
AT’s using A iterations of our construction. Suppose there exists an algorithhat

distinguishes thé-bit key-stream sequence associated with a known randomly chosen

systemS and an unknown randomly chosen initial internal state {0,1}" from a
randomL-bit sequence in tim&" with advantage. Then there exists an algorithm
C, which given the imagé&(z) of a randomly chosen (unknown}bit valuez by a
randomly chosen-bit to m-bit quadratic systens' produces a preimage 6f(x) with
probability at least;s; over all possible values of and.S in time upper bounded by
T

7,212 7 2 7 2
_2 ’;‘2/\ (T+()\+2)Ts+log (2 ZA )) L2

€

T/

A very rough interpretation of these theorems can be given us follows:

- theoreni 3.1l states that if the sequence produced by RSAPRBG is distinguishable
(in a certain time) from a random sequence then an "RSA type" problem (the

precise definition ofn, e, r, w)-CopRSA is given in definition 4.2 of [5]) could

be solved in less time than the best known attack, i.e. the Coppersmith attack. For

the choicen = 6144 this implies that an output up @2 bits should be secure
given the actual computer tecnology/{ instruction needed), see table 1[of [5];

- theorem ?? states that in the sequence produced by QUAD is distinguishable from
a random sequence, than a quadratic system in GF2 should be solved in less time
than expected by the best known algorithms based on Groebner bases, resulting
contradiction ¢ > 350).

One point in favour of RSAPRBG is that the practical implementation of QUAD

is proposed forn = 160, while one point in favour of QUAD is that the solution of
quadratic systems in GF2 is known to be NP-complete.

With regard to the applications of this type of generator it is necessary to take into

account the following features:

1. conjectures that are assumed to obtain security results (e.g. intractability of
integer factorization can no longer be true if quantum computers will be realized

and introduced in the market);

2. parameters for which the security of these families of generators is guaranteed;



3. the maximum bit-length of output sequence that can be malblkcgso that the
system continues to be safe;

4. system throughput. In practice this assessment can not be purely theoretical since
it is impossible to anticipate all the operations performed by a generic machine
(data movement operations, memory management operations,...).

3.1 Special TCSPRBG

Now we consider a modification of TCSPRBG. We call it Special TCSPRBG (SC-
SPRBG for short).

Definition 3.4 A SCSPRBG is defined as follows. Lgandg be two function as in
the definitio 3. Let:

Tiy1 = f(p1, s Pk, Ti)
since the parameters, ..., py, are fixed and known usually we wrifgx;).

yi = g(x:)

zi = w(yi)
The functionw is a weakly one way function such that:

= Fvit(z) >> Foit(Yi)

where #4;:(-) denotes the number of bits of the sequence. The output sequence of
generator is1 ||zz]]....

Definition 3.5 The TCSPRBG defined above is set correspondentto the SCSPRBG that
uses the same functighand the same function

We say that a TCSPRBG and a SCSPRBG are correspondent if they use the same
function f and the same function

Definition 3.6 The SCSPRBG inversion problem is defined as follows: giyMés||...|| 2
find zy,41.

Definition 3.7 The SCSPRBG partial inversion problem is defined as follows: given
z1]]22][-.[|2n find yp 1.

Remark 3.3 The SCSPRBG inversion problems are obviously not easier than the in-
version problems for the correpondent TCSPRBG.

Definition 3.8 The SCSPRBG sub-partial inversion problem is defined as the following:
givenzi||zz||...||z» and a subset of the bits of, 11, find z,,11.

Remark 3.4 This problem can be much easier than the previaussifnot carefully
chosen. To understand this, since the number of bits(of+ 1) is larger than the
number of bits ofy(n + 1), a partial knowledge of(n + 1) could be sufficient to
determiney(n + 1) and to compute(n + 1) = w(y(n + 1)). Moreover the previous
definition emphasizes that if one adversary can solve the sub-partial inversion problem
he actually gains some information.



Remark 3.5 On the other side if one adversary is not able tegbk inversion and
partial inversion problem for the SCSPRBG it is reasonable to assume that the sub-
partial inversion problem is not easier than the inversion problem for the funetion
(i.e. givenz(n + 1), findy(n + 1)). Therefore if we build an SCSPRBG correspondent

to a TCSPRBG (for example correspondentto RSAPRBG or QUAD) we only study the
difficulty of the inversion of functionv.

Remark 3.6 Thethroughputrate ofa SCSPRBG can be much higherthan the throughput
of correspondent TCSPRBG, due to use of the weakly one way funetion

Next section will be to devoted to find good candidate for the choice of funation

4 The function pick &, m)

Definition 4.1 Letk, m be numerical and let = m - 2=, Let now M/ be a public
known matrix of random bits witth rows and2! (i.e. m - 2¥) columns. We call pick
(k,m) the following function that transforms a string ©fk bits in a string ofl bits.
The input ofmk bits is divided inm segments ok bits. Them - 2* columns ofM are
arranged inm blocks of2* columns cach. Each segmentiobits is used to choose
("pick") column among th&* columns in the each block.

The output string is the xor of the choosen columns (and for each block).

Remark 4.1 The ratio between the length of the output string and the input one is
obviously2¥—1/k.

Remark 4.2 Let assume that we have a TCSPRBG that, at each iteration eutputs
bits. Then, if the pickk, m) function turns out to be a weakly one way function than it
can be used as the functianin the definitior 3.4.

Definition 4.2 The pick(k,m) inversion problem is defined as follows: given the matrix
M and the output string find the input string.

We give some estimate of the difficulties of this inversion problem. We fisrt show
that to solve the inversion problem is equivalent to solve a systemmvigtk unknowns,

[ + m linear equations anah - (2 ’“//2).

Letay ; ; the element of the Matrid/ ofrow1l < h < land columm < j < 2k 1
in the blockl < i < m. We denote withc = (j1, ..., jm) € (Zx~)™ the input string
andy = (y1,...,y1) € (Zx~)™ the output string. There exist linear relationship:

m 2F—1

Z Z Qhyi,j " dij = Yh (2)

i=1 j=0

with1 < h < [andwherey; ; arem?2k variablesir ,,. We have forall <i < m:

Gij;=075#jlj=7



Thereforevl <i <mang ; is equal to 1.
This corresponds to accompany the system of linear equations ref eqLin with the
following quadratic equations:

qijqii=00<j<i<2t—1 Y aj=11<i<m ®)

We see that an iteration of the QUAD can be traced back to a case in a standard way
(much) of a particular iteration of the problem pick. For simplicity we consider only
iterations QUAD doubling the number of bits (i.2.= 2). In the QUAD iteration we

haven bits and a matrix witlen rows andl +n + [ n

2 columns. In this case we call = (z1,...,2,) € (Z/3)" the input string and/ =
(Y1, .-, y2n) € (Zs2)" the output string; the relationship between the two strings are
given by the2n equazioni quadratiche:

Z a xlxj—i-Zb T =Y

1<i<j<n i=1
with a; ; € A, b; € B, whereA is the matrix with2n rows and(n

2 | and B a matrix with2n rows andn columns (for simplicity we don’t consider the

columnscl). We suppose that is divisible by2k (wherek is the variable in the pick
definition). Let:

_n o 2nn _ n(n—k)

We divide the index, .., n in g blocksoy, ...,o = di 2k indeces. Every block is
divided in two sub-blocks with the same number of indeces suclvthatr; U ¢;.

n/(2k)

Z ( Z b?l‘i + Z aﬁfjxixj>+

r=1 €0, i<jeconi,jo,

n/(2k)

+ Y <Z Zaﬁjxixj>+

1<r<s<k 1€0, JEOS

n/(2k)

+ 0y <Z > aﬁjxixj)Jr

1<r<s<k “i€o, jETS

Y (S S )

1<r<s<k “1E€T, jEOs

10



n/(2k)

+ Y <Z > aﬁfjxizj)Jr

1<r<s<k “Ni€T, jETs
We fix r, the result of sum ( or xor) depends by only valueq @f;),i € 0.} €
(Z,2)*. therefore we can rewrite:

n/(2k) 2k

DD hs

r=1 j=1

whereay, ;. ; are appropriate values and for alk » < 5 one ofq,. ; is equal 1.
Likewise each of four sum are rewrite as follows:

p1t3% patap
E Ah,r,jQrj--- E
r=gp-+1 r=p3 5 +1

wherep, 1 — ps = 5% (% — 1) wherepg = 0es = 1,2,3,4 and where for all
i(r

values ofr exists a onlyj = j(r) tale cheg, ;.

5 Efficient encryption method based on a SCSPRBG

In this section we present how to use a TCSPRBG or a SCSPRBG encrypt communi-
cations.

Suppose two users, Alice and Bob, want to communicate securely. The communi-
cation between two users can be of two types:

- one-way communication
- two-way communication

In an one way communication only one of the two users can send the message and
the other can only receive it, while in a two-way communication each user can both
transmit and receive messages.

Moreover a two way-communication can be:

- symmetrical (it is a communication system in which the speed or quantity of data
is the same in both directions, averaged over time, i.e. telephone);

- asymmetrical (it is a communication system in which the data speed or quantity
differs in one direction as compared with the other direction, averaged over time,
i.e. ADSL).

The encryption method works in both cases in almost the same way.

For simplicity’s sake we consider an one-way communication: suppose Alice want
to send a messagdé to Bob. Both use the same TCSPRBG (or SCSPRBG) characterize
by a private seed;,, and by some known parameteps, ...py.

11



Remark 5.1 In the case of two-way communication, the two userst generate two
sequence TCSPRBG (or SCSPRBG), one used to send a message from Alice to Bob,
the other used to send a message from Bob to Alice.

Then first two users exchange the seed securely (in fact it must be known to only
two users). Now Alice and Bob parallel generate a long sequence TCSPRBG (or
SCSPRBG), denoted hy. The S sequence is managed in FIFO mode (first in, first
out), i.e. thefirst bits products are used to encrypt messages while the new bits products
are positioned in the line.

They use pieces of sequence, denoted witARB;, as keys for symmetric key
encryption algorithm which will protect the communication (note that a symmetric en-
cryption algorithm is computationally more advantageous than a public key encryption
algorithm).

Suppose Alice wishs to send to Bob the messhfysecurely. The messadé is
divided intok sequences:

M = M| M| - - - [[ My,

each sequencl; is encrypted with a piecB RB; of the sequenc# (having the same
bit-length of M;) through a xor operation:

ALICE : enc(M;) = M; & PRB; Vi =1,....k

Alice sends the encrypted message to BOB. He is able to decrypt it through another
simple xor operation because he already has the sequi&Rér:

BOB : dec(enc(M;)) = enc(M;) ® PRB; = M;Yi=1,...,k

Encryption and decryption time are negligible. Moreover the parallel computation
of the chunkP R B; that we used to xor the messaljg can be done before its use.

Remark 5.2 This scheme amounts to consider the output sequence of a TCSPRBG
(SCSPRBG) as a key-stream for a stream cypher.

Remark 5.3 No padding schemes are required for the megdagad such type of
attacks can not be constructed.

Remark 5.4 A possible drawback of the scheme is that the actual bit production rate
can be very different for Alice and Bob.

Remark 5.5 The scheme works until the rate with the bits are produced and added to the
sequence(x) is greater than the rate at which the bits are taken to encrypt (decrypt)
messages.

This method is secure if:
- the keyPRB; is used only once;
- not a single value:; can be fully recovered by an attacker;

- the sequenc# is a PRBG.

12



Therefore it is necessary that Alice and BOB communicataiginaC.S P RBG.
Two users must share a common segdo generate the pseudo-random sequence
S both for aT’'C'S PRBG that for aSCSPRBG. There are two problems:

1. to exchange the seeg securely;
2. to preserve the seaq securely until it is used.

A possible solution for the first problem is that users exchange the seed personally.
Another solution is to use a public encryption algorithm (as RSA) to exchange the seed.
If the seed is exchanged through RSA algorithm it is secure if:

- quantum computers not exist;

- authentication is made.

Remark 5.6 If parts of the seed are encrypted via RSA algorithm and sent in a cross-
way between Alice and Bob we can observe that attacker should break both RSA-keys
of Alice and Bob.

Remark 5.7 In the present work we don’t consider in detail the following problems:
- how to produce and share truly random seed between Alice and Bob;
- authentication problems (Man in the middle);

- moreover we only generically address the problem of secret data protection for
Alice and Bob.

Remark 5.8 We prefer to use RSA algorithm rather than elliptic curves for various
practical reasons:

- for simplicity’s sake;
- RSA cryptanalysis has been most studied than that of elliptic curves.

- we believe that the actual implementation of RSA, given its simplicity, can be
less prone to fatal mistakes.

The second problem can be solved generating and exchanging the seed shortly before
its use. In this case all stages of generation of the seed must be protected too.

Remark 5.9 In this work we will not consider in details these two problems or the
problem to generate really random sequences. We will only focus on the use and
efficiency of a TCSPRBG and a SCSPRBG.

13



6 An example of an efficient SCSPRBG

In this section we want to give an example of an SCSPRBG for which can be given
some security results. Since the inversion problem (sele_ def.3.6) for a SCSPRBG is not
easier than the inversion problem for the correspondent TCSPRBG, the security results
that are valid for the correspondent TCSPRBG still hold.

The hardness of SCSPRBG partial inversion problem (see [def. 3.8) is directly
connected with the choice of the functiam We can think of many examples to
construct thav function as we require that it is only a weakly one-way function. We
outline one example that was inspired to us by QUAD.

The crypto-analysis of such example is far from complete, but through it we want
to illustrate a basic rule, in our opinion, to choose théunction, i.e. the simplicity;
in fact if the function structure is relatively simple its safety will be easier to prove.
Furthermore in the opposite case it will be easier to build an attack that proves its
insecurity, thus prompting the need to change the choice of the function.

6.1 Possiblev function

We suppose to have a systemvolinear equations i2n unknowns inGF(2), with n
sufficiently large (each coefficient is represented by a bit).
We suppose:
on = 2! = 2l9l=h

with i < [. a;; denotes thg-th coefficient ofi-th equation;A’ denotes thg-th column
of the matrixA.

We split up the column ig’~" blocks, each containir2f columns. Now we choose
one column for each block and compute the xor of the selected columns:

A g .. @ A 4)

wheres = 2!=" andi; = (j —1)2" + 1+ r; wherer; is an integer such that< r; <
2h=1,

Then to make that choice, we must speeifyfor 1 < j < 2l=h: eachr; consists
of h bits, totallingh2!~" bits. This sequence represents the input ofittfanction and
the result of the operatidd 4 represents the output.

Before making an assessment of the safety of such system, we consider its compu-
tational efficiency. The system requir%lé% xor/bit whered is the number of bits of

aword (i.e.d = 32 ord = 64). The multiplication factof? is the ratio between the bit
length of output sequence and the bit length of the input sequence:

2l71 2h71

TR T Th

Remark 6.1 We consider a numerical exampl@rif= 8192 andh = 6 we need only
4 xor/bit ford = 32, and we obtairkR = 32/6.

The computation ofv is then at least 25 times faster than QUAD (see equation ?7?).
To compute the speed of the SCSPRBG we have to take into a count the time spent for
the iteration off (the time spent in the computation ¢fs negligible).

R
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We suppose that an iteration of CSPRBG (considering onlyuhetfon f andg)
costsT; cycles/bit and that the functian costsTy; cycles/bit withR as multiplication
factor. Each bit of first iteration generatBit used forw function; therefore the cost
is:

T
(El + Tg) cycles/bit (5)
In the case of RSAPRG authors declare a value- 3000 cycles/bit (se€ [5]) while in

the case of QUAD it is reasonable to estimate 200-400 cycles/bit. Therefore even if we
use QUAD as correspondent TCSPRBG we can nedlegetith respect tdl; /R and

we can conclude that the speed of our system is roughly 5 times greater than QUAD.

Remark 6.2 We want to compare the amount of memory required by the system de-
scribed above rather to a MQ system. For instancefer8192, a system of this type
requires a memory of 4 Mbytes. We remember that a MQ system with 320 equations
in 160 unknowns requires/2 Mbytes of memory. Therefore in our case we need a
storage space a 8 times bigger than a MQ system.

Remark 6.3 We can iterate the functiona few times. This can be done in order to

get a higher speed, evenjifis rather low, e.g.j = 2 or j = 3, we can achieve a

much higher speed than the correspondent TCSPRBG. Such speed can be computed in
a similar way td b, but in any case will obviously be boundedbyycles/bit.

6.2 Crypto-analysis considerations

We have just started the study of the proposed system above, but we want to mention
some considerations for completeness.

We analyzed is how difficult it is to inverb; more precisely the problem is the
following:

- givenA” @ ... @ A%, find the sequenca||...||7.

This problem does not correspond to the definition of partial inversion problem we give
(see def[[318) but it seems to us that its computational complexity is a good indicator
for the computational complexity of the partial inversion problem.

We observe that the choice of exactly one column of each block of |@igthrre-
sponds to the addition of the following equation for each block:

S =1 (6)

i€block
z;x; =0 Vi, j € block (7)

The equatior{sl6 a@~" linear equations (one for each block) &nd 7#re (2" —1)
quadratic equations. We observe that the equalfibns 7 are not independent. Equations
(@) can be replaced by the following minimal set of quadratic equations for each block:

ziz; =0 Vi,j €block: i+j=0inGF(2) (8)
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Equation§B give that in a single block there is at mostgregual to 1 when the index

1 is odd and at most ong equal to 1 when the index is even. Then the equaiion 6 gives
us that exactly one; is equal to 1 for each block. The total number of equatidns 8 is
2!=1(2"=1 —1). Therefore we get an MQ system with this particular structure:

- 2! unknowns;
- 2!=1 4 2!=" |inear equations;
- 2i=1(2"=1 _ 1) quadratic equations.

The bestway to reduce the complexity of the system seems to us to use Gauss elimination
to possible eliminaté!~! + 2!=" unknowns we will then be left with a system with the
following structure:

- 2i=1 _ 2l=h ynknowns;

- 2!=1(2h=1 — 1) equations of second degree.

6.3 Three strategies to find the solution of the system

Now we want to illustrate three strategies to find the solution of our system. We assume
that we are left with the firs2’—! — 2!~ unknowns.

6.4 First strategy

A straightforward one is the following:

1. For each block of left unknowns we have to choice one variable to be put equal
to one. This giveg" "' =2""") possibilities.

2. To compute the other variables and verify if they too respect the equltions 8; in
this case (very probably) this is the solution of the system;

3. Otherwise to go to step 1) until we find the solution.

For clarity, we consider the numerical example of the rerhark 6.1n # 4096
andh = 6, the step 1) give>"2 choices. The step 3) requires the xor of 61 words to
compute a number of unknowns equal to 32 (64 if the machine works in 64 bits).

It is very likely that the values of these first 32 unknowns do not respedilthe 8.
Therefore we can estimate, although not accurately, the expected time to find the solution
in5,9 - 10 machine cycles.

6.5 Second strategy

The third strategy is consisted in solving the system applying the XL relinearization
algorithm by [17]. In the case of the numerical example of refark 6.1 this algorithm

produces a system <6‘3 968
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12 ] linear equations, obtaining a computational complexit<6f968

2,37
12) =5,7-10%. So this strategy seems to be the best one.

We insisted that the particular structure of equatidns 8 can speed up above strategies,
nevertheless the estimates seem to be quite reassuring.

6.6 Third strategy

Another possible strategy is to use linear equations to eliminate some of the variables
x; and derive the remaining by using quadratic equations. In this case we have 8192
unknowns and 4224 (4096+128) linear equations. Therefore we cane delete (most)
4224 unknown. We remain with 3968 unknown afk63264 quadratic equations.

We use the Brdet estimate. In this cdse- 65 andD ~ 7.6. Let D=7 the estimate

operations number to solve the systen(i3968

2,37
7) ~ 8.4 -10°° that is less of the previous strategies.

6.7 Fourth strategy

Another strategy to solve the system is probabilistic type. More precisely we can fix
arbitrarily in each of the 128 blocks by 64 variables, 31 variables equal. Now we have
a sufficient number of equations to determinate all variables. It is easy to controll if

128
a variable is equal 1. The success probability is equ%%@) =1,5-1073" =

(6,6) - 103%)~1,
If the computational cost of a single verificationlié*, we obtain a probability to
solve the system equal te 1 — 1/e with a computational complexity @f, 6 - 104°.
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