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Abstract

We make a new proposal about how to use in an effective way a CSPRBG (Com-
putationally Secure Pseudo Random Bit Generator) for cryptographic purposes. We
introduce the definitions of TCSPRBG (Typical CSPRBG) and SCSPRBG (Special
CSPRBG). In particular the definition of SCSPRBG synthetizes in a simple way
our proposal of how to modify a CSPRBG in order to achieve a higher throughput
rate, while retaining some essential features of its computational security.

We then summarize which should be, in our opinion, a "standard way" to use a
CSPRBG for cryptographic purposes. We eventually present as an application, a
particular SCSPRBG for which we can achieve throughput rates greater than100

Mbits/sec on current mobile devices.
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1 Introduction

In this paper we propose an encryption scheme based on a CSPRBG that we believe
has some innovative features.

It is well known that a CSPRBG can be used to communicate encrypted data.
In particular the computational work needed to ensure cryptographic security can be
carried out outside the temporal interval of encryption-decryption of data: in fact the
encryption-decryption phase consists of two xor with a same piece of the string produced
by CSPRBG, therefore its execution time is negligible. We describe this aspect saying
that the encryption method has an execution time with zero latency, just to highlight that
this scheme can be applied to real-time communications. Moreover it is clear that the
maximum rate allowed for communication is only bounded by the throughput rate of the
CSPRBG. We can even replace the word âŁœmaximumâŁž with word âŁœaverageâŁž
in the previous statement if we use some appropriate buffering algorithm.

We first take into account the existence of PRBGs for which security results have
been proved. In particular we consider RSAPRBG and QUAD, for whichsecurity results
have been proved in papers [RSA] , [QUAD1], [QUAD2]. In the paper [ARTICOLO2]
we carried out a Java software implementation of both these PRBGs putting in place
all knowledge and tricks we know, obtaining in both cases a throughput rate of several
Mbit/sec (see [], pagâŁ¦); such results seem to be better of the ones forecasted in [],
pagâŁ¦ for RSAPRBG and somewhat not bed for QUAD, giving the results obtained in
[], pagâŁ¦ for a hardware implementation of QUAD on a FPGA.

Such throughput rates, nevertheless, in our opinion are insufficient for some kind
of applications (namely encryption of audio/video data), since while they could be
improved by a hardware implementation, they are actually obtained used with CPU
load of 100

In order to obtain a faster variant of these CSPRBGs we introduce the definitions
of two particular classes of them, namely the class TCSPRBG that turns out to contain
both RSAPRBG and QUAD, and the class SCSPRBG; a PRBG belonging to this class
starts from a correspondent TCSPRBG and uses one more one-way function w as a
âŁœlocalâŁž expander of the bit stream, in order to obtain a higher throughput rate
while basically maintaining the same security (even if function w could be inverted in
some case, this does not compromise the security of the bit stream, see propositionX.X).
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To give a precise idea of the throughput rates we can obtain, weconsider a particular
choice for the function w. We call it the âŁœpickâŁž function. Again paper [] provides
numerical results of a java software implementation of this function, seeâŁ¦.

In the final section we show how the inversion of the âŁœpickâŁž function is the
inversion of a (very particular) quadratic system in GF(2). Moreover we also clarify
some relations between the âŁœpickâŁž function and the function f used in QUAD.

Then we develop some strategies to invert the âŁœpickâŁž function. We start from
the simplest ones or from some adaptation of known strategies for inversion of quadratic
systems to our particular case,trying our best to exploit particularities of the âŁœpickâŁž
function to make them faster. The best time estimated for the inversion âŁœpickâŁž
function seem to confirm that such inversion is practically not possible for the choice
of parameters we have chosen in [].

We anyway arenâŁ™t able to obtain sharp lower bounds for the time needed for
inversion.

It seems to us however that the combined effect of propositionX.X and the estimated
times for the inversion of the âŁœpickâŁž function is that an SCSPRBG based on a
correspondent TCSPRBG given by RSAPRBG or QUAD coupled with the choice of
âŁœpickâŁž function as w deserves some attention.

Organization. Section 2 contains notations and definitions. In the section 3 we
introduce the definitions of TCSPRBG and SCSPRBG along with some comments and
remarks. In the section 4 we describe the method; in the section 5 we discuss the
applications of the method on existing mobile devices.

2 Preliminary notations and definitions

Notation. We usei⊕ j to denote the bitwise xor of integersi andj and|| to denote the
concatenation of two sequences.

2.1 One way function

There are some types of functions that play a significant roles in cryptography. One of
these types is the one way function. We adopt for our purposes the following definitions
of one-way function from [12].

Definition 2.1 (Strong one way function) A functionf : {0, 1}n → {0, 1}m withm =
O(n) is called (strongly) one way function if the following two condition hold:

1. Easy to compute: There exists a deterministic polynomial time algorithmA such
that on inputx algorithmA outputsf(x) (i.e. A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial time algorithmA′, every pos-
itive polynomialp(·) and all sufficiently largen′s,

Pr[A′(f(Un)) ∈ f−1(f(Un))] <
1

p(n)

whereUn denotes a random variable uniformly distributed over{0, 1}n.
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Definition 2.2 (Weak one way function) A functionf : {0, 1}n → {0, 1}m with m =
O(n) is called (weak) one way function if the following two condition hold:

1. Easy to compute: There exists a deterministic polynomial time algorithmA such
that on inputX algorithmA outputsf(x) (i.e. A(x) = f(x)).

2. Slightly hard to invert: There exists a polynomialp(·) such that for every proba-
bilistic polynomial time algorithmA′ and all sufficiently largen′s:

Pr[A′(f(Un)) 6∈ f−1(f(Un))] >
1

p(n)

2.2 Random bit generator

Definition 2.3 A random bit generator is an algorithm with outputs a sequence of sta-
tistically independent and unbiased binary digits.

Remark 2.1 It is possible to use a random bit generator to generate random numbers.
For example a integer number in the interval[0, n] can be obtained by generating a
random bit sequence of length⌊log2n⌋+ 1 and converting it to an integer.

A true random bit generator requires a naturally occurring source of randomness. It
is difficult to design a hardware device or software program that produces uncorrelated
bit sequences exploiting this randomness. Moreover this kind of generator is influenced
by external features so it must be periodically tested.

There are two kind of true random bit generator:

- hardware-based generator (that exploits the randomness which occurs in some
physical phenomena);

- software-based generator (that can be based on the system clock or on the content
of input/output buffers, and this is more difficult to design than previous).

2.3 Pseudo random bit generator

Definition 2.4 A pseudo-random bit generator (PRBG) is a deterministic algorithm
which, given a truly-random binary sequence of lengthk, outputs a binary sequence of
lengthl >> k which appears to be random. The input to the PRBG is called seed and
the output is called a pseudo-random bit sequence.

The output to the PRBG is not random because the number of output sequences is
a small fraction,2k/2l of all binary sequences of lengthl.

The idea is to consider a small truly-random sequence and to expand it in a longer
sequence. In this way a possible adversary can not easily distinguish between output
sequences of the PRBG and truly-random sequences of lengthl. Therefore there are
statistical tests that represent necessary conditions but not sufficient so that a generator
may be secure. In fact it is impossible to prove mathematically that the output of a
generator is truly-random. Tests are probabilistic.
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A minimum security condition for a random sequence generatoris that the length
k of the random seed should be sufficiently large so that a search over2k elements is
infeasible for the adversary.

The seed must have two properties:

- the output sequence of PRGB must be statistically indistinguishable from the
truly-random sequence;

- output bits must be unpredictable by the adversary that has limited computational
resources.

We now have to specify what "appears to be random" main.

Definition 2.5 A PRGB is said to pass all polynomial-time statistical tests,and therefore
can be considered as a cryptographic secure PRGB, if no polynomial-time algorithm
can distinguish between an output sequence of the generator and truly-random sequence
with probability significantly greater than1/2.

Definition 2.6 A pseudo-random bit generator is said to pass the next-bit test if there is
no polynomial-time algorithm which, on input of the firstl bits of an output sequence
s, can predict the(l + 1)st bit of s with probability significantly greater than12 .

Remark 2.2 A pseudo-random bit generator passes the next-bit test if and only if it
passes all polynomial-time statistical tests.

Definition 2.7 A PRBG that passes the next-bit test (possibly under some plausible but
unproved mathematical assumption such as the intractability of factoring integers) is
called a cryptographically secure pseudo-random bit generator (CSPRBG).

3 Typical CSPRBG

Definition 3.1 A typical-CSPRBG (denoted with TCSPRBG) is defined as follows.
Computed the initial valuex0 from a true random seedu0 after an initialization phase,
let f be an one-way invertible function andg be an one-way not (invertible) function.
Compute:

xi+1 = f(p1, ..., pk, xi) ∀i = 0, 1, ...

wherep1, ..., pk are fixed and known parameters,

yi = g(xi) ∀i = 1, 2, ...

The output sequence to pseudo-random generator is:

s = y1||y2||...

where|| denotes the concatenation.
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The output sequence depend on the properties of the one-way function used therefore
it may be necessaryyi only keeps some bits of the output valuesxi in order to remove
possible correlation between successive values. Therefore the functiong is typically a
projection.

Definition 3.2 The TCSPRBG inversion problem is the following: giveny1||y2||...||yn,
find xn+1.

Definition 3.3 The TCSPRBG partial inversion problem is the following: giveny1||y2||...||yn,
find yn+1.

Remark 3.1 The idea behind previous definition is the following:

- if we adversaly solve the inversion problem defined by 3.2we clearly can predicted
all the future output of the PRBG, and the security in this case is completaly
broken;

- if we adversaly can solve for some values ofn (but not for everyn) the partial
inversion problem it can still predicted part of the future output of the PRBG and
security partial broken.

Remark 3.2 The "CS" in "TCSPRBG" stands for cryptographically secure. There can
not be an unconditioned proof of this feature (the same is true for the existence of a
one-way function, see [12]). All existing security proof are conditioned to conjectures
of the following types:

- P 6= NP ;

- on unsolvability of well known problems in less than a certain certain time.

Two examples of TCSPRBG we consider in the present thesis are:

- a variant of the Micali Schnorr RSA PRG studied by Steinfield, Pieprzyk and
Wang in [5];

- QUAD [9],[10].

The strategy that is followed to prove that such PRBGs are computational secure is
the following:

- a necessary premise to solve any inversion problem is that sequencey1||y2..||yn
is distinguishable from a random sequence;

- if such sequence (forn not too large) is distinguishable from a random sequence
then some well known hard problem could be solved more efficently than it is
actually known.

In order to give an idea of how secure these CSPRBG are, we report the statement
of the main security results obtained by these authors respectively for the RSA PRBG
and for the QUAD:
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Theorem 3.1 For alln ≥ 29, any(T, δ) distinguisherD for (n, e, r, l)-RSAPRG can
be converted into a(TINV , ǫINV ) inversion algorithmA for the(n, e, r, w)-CopRSA
problem (withw = 3 log(2l/δ) + 5) with:

TINV = CS(T +O(l/r log(e)n2)) (1)

where:
CS = 64(l/δ)2n log(n)

and:
ǫINV = δ/9− 4/2n/2

Theorem 3.2 LetL = λ(k−1)n be the number of key-stream bits produced by in time
λTS usingλ iterations of our construction. Suppose there exists an algorithmA that
distinguishes theL-bit key-stream sequence associated with a known randomly chosen
systemS and an unknown randomly chosen initial internal statex ∈ {0, 1}n from a
randomL-bit sequence in timeT with advantageǫ. Then there exists an algorithm
C, which given the imageS(x) of a randomly chosen (unknown)n-bit valuex by a
randomly chosenn-bit to m-bit quadratic systemS produces a preimage ofS(x) with
probability at least ǫ

23λ over all possible values ofx andS in time upper bounded by
T ′.

T ′ =
27n2λ2

ǫ2

(

T + (λ + 2)TS + log

(

27nλ2

ǫ2

))

+
27nλ2

ǫ2
TS

A very rough interpretation of these theorems can be given us follows:

- theorem 3.1 states that if the sequence produced by RSAPRBG is distinguishable
(in a certain time) from a random sequence then an "RSA type" problem (the
precise definition of(n, e, r, w)-CopRSA is given in definition 4.2 of [5]) could
be solved in less time than the best known attack, i.e. the Coppersmith attack. For
the choicen = 6144 this implies that an output up to232 bits should be secure
given the actual computer tecnology (270 instruction needed), see table 1 of [5];

- theorem ?? states that in the sequence produced by QUAD is distinguishable from
a random sequence, than a quadratic system in GF2 should be solved in less time
than expected by the best known algorithms based on Groebner bases, resulting
contradiction (n > 350).

One point in favour of RSAPRBG is that the practical implementation of QUAD
is proposed forn = 160, while one point in favour of QUAD is that the solution of
quadratic systems in GF2 is known to be NP-complete.

With regard to the applications of this type of generator it is necessary to take into
account the following features:

1. conjectures that are assumed to obtain security results (e.g. intractability of
integer factorization can no longer be true if quantum computers will be realized
and introduced in the market);

2. parameters for which the security of these families of generators is guaranteed;

7



3. the maximum bit-length of output sequence that can be made public so that the
system continues to be safe;

4. system throughput. In practice this assessment can not be purely theoretical since
it is impossible to anticipate all the operations performed by a generic machine
(data movement operations, memory management operations,...).

3.1 Special TCSPRBG

Now we consider a modification of TCSPRBG. We call it Special TCSPRBG (SC-
SPRBG for short).

Definition 3.4 A SCSPRBG is defined as follows. Letf andg be two function as in
the definition 3.1. Let:

xi+1 = f(p1, ..., pk, xi)

since the parametersp1, ..., pk are fixed and known usually we writef(xi).

yi = g(xi)

zi = w(yi)

The functionw is a weakly one way function such that:

- #bit(zi) >> #bit(yi)

where#bit(·) denotes the number of bits of the sequence. The output sequence of
generator isz1||z2||....

Definition 3.5 The TCSPRBG defined above is set correspondent to the SCSPRBG that
uses the same functionf and the same functiong.

We say that a TCSPRBG and a SCSPRBG are correspondent if they use the same
functionf and the same functiong.

Definition 3.6 The SCSPRBG inversion problem is definedas follows: givenz1||z2||...||zn
find xn+1.

Definition 3.7 The SCSPRBG partial inversion problem is defined as follows: given
z1||z2||...||zn find yn+1.

Remark 3.3 The SCSPRBG inversion problems are obviously not easier than the in-
version problems for the correpondent TCSPRBG.

Definition 3.8 The SCSPRBG sub-partial inversion problem is defined as the following:
givenz1||z2||...||zn and a subset of the bits ofzn+1, find zn+1.

Remark 3.4 This problem can be much easier than the previous ifw is not carefully
chosen. To understand this, since the number of bits ofz(n + 1) is larger than the
number of bits ofy(n + 1), a partial knowledge ofz(n + 1) could be sufficient to
determiney(n+ 1) and to computez(n+ 1) = w(y(n + 1)). Moreover the previous
definition emphasizes that if one adversary can solve the sub-partial inversion problem
he actually gains some information.
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Remark 3.5 On the other side if one adversary is not able to solve the inversion and
partial inversion problem for the SCSPRBG it is reasonable to assume that the sub-
partial inversion problem is not easier than the inversion problem for the functionw
(i.e. givenz(n+1), findy(n+1)). Therefore if we build an SCSPRBG correspondent
to a TCSPRBG (for example correspondent to RSAPRBG or QUAD) we only study the
difficulty of the inversion of functionw.

Remark 3.6 The throughput rate of a SCSPRBG can be much higher than the throughput
of correspondent TCSPRBG, due to use of the weakly one way functionw.

Next section will be to devoted to find good candidate for the choice of functionw.

4 The function pick(k,m)

Definition 4.1 Letk,m be numerical and letl = m · 2k−1. Let nowM be a public
known matrix of random bits withl rows and2l (i.e. m · 2k) columns. We call pick
(k,m) the following function that transforms a string ofmk bits in a string ofl bits.
The input ofmk bits is divided inm segments ofk bits. Them · 2k columns ofM are
arranged inm blocks of2k columns cach. Each segment ofk bits is used to choose
("pick") column among the2k columns in the each block.

The output string is the xor of the choosen columns (and for each block).

Remark 4.1 The ratio between the length of the output string and the input one is
obviously2k−1/k.

Remark 4.2 Let assume that we have a TCSPRBG that, at each iteration outputsm · k
bits. Then, if the pick(k,m) function turns out to be a weakly one way function than it
can be used as the functionw in the definition 3.4.

Definition 4.2 The pick(k,m) inversion problem is defined as follows: given the matrix
M and the output string find the input string.

We give some estimate of the difficulties of this inversion problem. We fisrt show
that to solve the inversion problem is equivalent to solve a system withm ·2k unknowns,

l +m linear equations andm ·

(

2 k//2

)

.

Letah,i,j the element of the MatrixM of row1 < h < l and column0 < j < 2k−1
in the block1 < i < m. We denote withx = (j1, ..., jm) ∈ (Z2k )m the input string
andy = (y1, ..., yl) ∈ (Z2k)m the output string. There existm linear relationship:

m
∑

i=1

2k−1
∑

j=0

ah,i,j · qi,j = yh (2)

with 1 ≤ h ≤ l and whereqi,j arem2k variables inZ/2. We have for all1 ≤ i ≤ m:

qi,j = 0 j 6= ji1 j = ji
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Therefore∀1 ≤ i ≤ m an qi,j is equal to 1.
This corresponds to accompany the system of linear equations ref eqLin with the

following quadratic equations:

q i,jqi,l = 0 0 ≤ j ≤ l ≤ 2k − 1

2k−1
∑

j=0

qi,j = 1 1 ≤ i ≤ m (3)

We see that an iteration of the QUAD can be traced back to a case in a standard way
(much) of a particular iteration of the problem pick. For simplicity we consider only
iterations QUAD doubling the number of bits (i.e.k = 2). In the QUAD iteration we

haven bits and a matrix with2n rows and1 + n+

(

n

2 columns. In this case we callx = (x1, ..., xn) ∈ (Z/2)
n the input string andy =

(y1, ..., y2n) ∈ (Z/2)
n the output string; the relationship between the two strings are

given by the2n equazioni quadratiche:

∑

1≤i<j≤n

ahi,jxixj +

n
∑

i=1

bhi xi = yh

with ai,j ∈ A, bi ∈ B, whereA is the matrix with2n rows and

(

n

2

)

andB a matrix with2n rows andn columns (for simplicity we don’t consider the

columnschi ). We suppose thatn is divisible by2k (wherek is the variable in the pick
definition). Let:

m =
n

2k
+

2n

2k
(
n

2k
− 1) =

n(n− k)

2k2

We divide the index1, .., n in n
2k blocksσ1, ..., σ n

2k
di 2k indeces. Every block is

divided in two sub-blocks with the same number of indeces such thatσi = τi ∪ φi.

n/(2k)
∑

r=1

(

∑

i∈σr

bhi xi +
∑

i<jconi,jσr

ahi,jxixj

)

+

+

n/(2k)
∑

1≤r<s≤k

(

∑

i∈σr

∑

j∈σs

ahi,jxixj

)

+

+

n/(2k)
∑

1≤r<s≤k

(

∑

i∈σr

∑

j∈τs

ahi,jxixj

)

+

+

n/(2k)
∑

1≤r<s≤k

(

∑

i∈τr

∑

j∈σs

ahi,jxixj

)

+
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+

n/(2k)
∑

1≤r<s≤k

(

∑

i∈τr

∑

j∈τs

ahi,jxixj

)

+

We fix r, the result of sum ( or xor) depends by only values of{(xi), i ∈ σr} ∈
(Z/2)

2k. therefore we can rewrite:

n/(2k)
∑

r=1

2k
∑

j=1

ah,r,j · qr,j

whereah,r,j are appropriate values and for all1 ≤ r ≤ n
2k one ofqr,j is equal 1.

Likewise each of four sum are rewrite as follows:

ρ1+
n

2k
∑

r= n

2k
+1

ah,r,jqr,j...

ρ4+
n

2k
∑

r=ρ3
n

2k
+1

whereρs+1 − ρs = n
2k

(

n
2k − 1

)

whereρ0 = 0 e s = 1, 2, 3, 4 and where for all

values ofr exists a onlyj = j(r) tale cheqr,j .

5 Efficient encryption method based on a SCSPRBG

In this section we present how to use a TCSPRBG or a SCSPRBG encrypt communi-
cations.

Suppose two users, Alice and Bob, want to communicate securely. The communi-
cation between two users can be of two types:

- one-way communication

- two-way communication

In an one way communication only one of the two users can send the message and
the other can only receive it, while in a two-way communication each user can both
transmit and receive messages.

Moreover a two way-communication can be:

- symmetrical (it is a communication system in which the speed or quantity of data
is the same in both directions, averaged over time, i.e. telephone);

- asymmetrical (it is a communication system in which the data speed or quantity
differs in one direction as compared with the other direction, averaged over time,
i.e. ADSL).

The encryption method works in both cases in almost the same way.
For simplicity’s sake we consider an one-way communication: suppose Alice want

to send a messageM to Bob. Both use the same TCSPRBG (or SCSPRBG) characterize
by a private seed,x0, and by some known parameters,p1, ...pk.

11



Remark 5.1 In the case of two-way communication, the two usersmust generate two
sequence TCSPRBG (or SCSPRBG), one used to send a message from Alice to Bob,
the other used to send a message from Bob to Alice.

Then first two users exchange the seed securely (in fact it must be known to only
two users). Now Alice and Bob parallel generate a long sequence TCSPRBG (or
SCSPRBG), denoted byS. TheS sequence is managed in FIFO mode (first in, first
out), i.e. the first bits products are used to encrypt messages while the new bits products
are positioned in the line.

They use pieces ofS sequence, denoted withPRBi, as keys for symmetric key
encryption algorithm which will protect the communication (note that a symmetric en-
cryption algorithm is computationally more advantageous than a public key encryption
algorithm).

Suppose Alice wishs to send to Bob the messageM securely. The messageM is
divided intok sequences:

M = M1||M2|| · · · ||Mk

each sequenceMi is encrypted with a piecePRBi of the sequenceS (having the same
bit-length ofMi) through a xor operation:

ALICE : enc(Mi) = Mi ⊕ PRBi ∀i = 1, ..., k

Alice sends the encrypted message to BOB. He is able to decrypt it through another
simple xor operation because he already has the sequencePRBi:

BOB : dec(enc(Mi)) = enc(Mi)⊕ PRBi = Mi ∀i = 1, ..., k

Encryption and decryption time are negligible. Moreover the parallel computation
of the chunkPRBi that we used to xor the messageMi can be done before its use.

Remark 5.2 This scheme amounts to consider the output sequence of a TCSPRBG
(SCSPRBG) as a key-stream for a stream cypher.

Remark 5.3 No padding schemes are required for the messageM and such type of
attacks can not be constructed.

Remark 5.4 A possible drawback of the scheme is that the actual bit production rate
can be very different for Alice and Bob.

Remark 5.5 The scheme works until the rate with the bits are produced and added to the
sequences(x0) is greater than the rate at which the bits are taken to encrypt (decrypt)
messages.

This method is secure if:

- the keyPRBi is used only once;

- not a single valuexi can be fully recovered by an attacker;

- the sequenceS is a PRBG.

12



Therefore it is necessary that Alice and BOB communicate through aCSPRBG.
Two users must share a common seedx0 to generate the pseudo-random sequence

S both for aTCSPRBG that for aSCSPRBG. There are two problems:

1. to exchange the seedx0 securely;

2. to preserve the seedx0 securely until it is used.

A possible solution for the first problem is that users exchange the seed personally.
Another solution is to use a public encryption algorithm (as RSA) to exchange the seed.
If the seed is exchanged through RSA algorithm it is secure if:

- quantum computers not exist;

- authentication is made.

Remark 5.6 If parts of the seed are encrypted via RSA algorithm and sent in a cross-
way between Alice and Bob we can observe that attacker should break both RSA-keys
of Alice and Bob.

Remark 5.7 In the present work we don’t consider in detail the following problems:

- how to produce and share truly random seed between Alice and Bob;

- authentication problems (Man in the middle);

- moreover we only generically address the problem of secret data protection for
Alice and Bob.

Remark 5.8 We prefer to use RSA algorithm rather than elliptic curves for various
practical reasons:

- for simplicity’s sake;

- RSA cryptanalysis has been most studied than that of elliptic curves.

- we believe that the actual implementation of RSA, given its simplicity, can be
less prone to fatal mistakes.

The second problem can be solved generating and exchanging the seed shortly before
its use. In this case all stages of generation of the seed must be protected too.

Remark 5.9 In this work we will not consider in details these two problems or the
problem to generate really random sequences. We will only focus on the use and
efficiency of a TCSPRBG and a SCSPRBG.
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6 An example of an efficient SCSPRBG

In this section we want to give an example of an SCSPRBG for which can be given
some security results. Since the inversion problem (see def.3.6) for a SCSPRBG is not
easier than the inversion problem for the correspondent TCSPRBG, the security results
that are valid for the correspondent TCSPRBG still hold.

The hardness of SCSPRBG partial inversion problem (see def. 3.8) is directly
connected with the choice of the functionw. We can think of many examples to
construct thew function as we require that it is only a weakly one-way function. We
outline one example that was inspired to us by QUAD.

The crypto-analysis of such example is far from complete, but through it we want
to illustrate a basic rule, in our opinion, to choose thew function, i.e. the simplicity;
in fact if the function structure is relatively simple its safety will be easier to prove.
Furthermore in the opposite case it will be easier to build an attack that proves its
insecurity, thus prompting the need to change the choice of the function.

6.1 Possiblew function

We suppose to have a system ofn linear equations in2n unknowns inGF (2), with n
sufficiently large (each coefficient is represented by a bit).

We suppose:
2n = 2l = 2l2l−h

with h < l. aij denotes thej-th coefficient ofi-th equation;Aj denotes thej-th column
of the matrixA.

We split up the column in2l−h blocks, each containing2h columns. Now we choose
one column for each block and compute the xor of the selected columns:

Ai1 ⊕ ...⊕Ais (4)

wheres = 2l−h andij = (j − 1)2h +1+ rj whererj is an integer such that0 ≤ rj ≤
2h−1.

Then to make that choice, we must specifyrj for 1 ≤ j ≤ 2l−h; eachrj consists
of h bits, totallingh2l−h bits. This sequence represents the input of thew function and
the result of the operation 4 represents the output.

Before making an assessment of the safety of such system, we consider its compu-
tational efficiency. The system requires2l−h

−1
d xor/bit whered is the number of bits of

a word (i.e.d = 32 or d = 64). The multiplication factorR is the ratio between the bit
length of output sequence and the bit length of the input sequence:

R =
2l−1

h2l−h
=

2h−1

h

Remark 6.1 We consider a numerical example. if2n = 8192 andh = 6 we need only
4 xor/bit ford = 32, and we obtainR = 32/6.

The computation ofw is then at least 25 times faster than QUAD (see equation ??).
To compute the speed of the SCSPRBG we have to take into a count the time spent for
the iteration off (the time spent in the computation ofg is negligible).
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We suppose that an iteration of CSPRBG (considering only the functionf andg)
costsT1 cycles/bit and that the functionw costsT2 cycles/bit withR as multiplication
factor. Each bit of first iteration generatesR bit used forw function; therefore the cost
is:

(

T1

R
+ T2

)

cycles/bit (5)

In the case of RSAPRG authors declare a valueT1 ∼ 3000 cycles/bit (see [5]) while in
the case of QUAD it is reasonable to estimate 200-400 cycles/bit. Therefore even if we
use QUAD as correspondent TCSPRBG we can neglectT2 with respect toT1/R and
we can conclude that the speed of our system is roughly 5 times greater than QUAD.

Remark 6.2 We want to compare the amount of memory required by the system de-
scribed above rather to a MQ system. For instance forn = 8192, a system of this type
requires a memory of∼ 4 Mbytes. We remember that a MQ system with 320 equations
in 160 unknowns requires1/2 Mbytes of memory. Therefore in our case we need a
storage space a 8 times bigger than a MQ system.

Remark 6.3 We can iterate the functionw a few times. This can be done in order to
get a higher speed, even ifj is rather low, e.g.j = 2 or j = 3, we can achieve a
much higher speed than the correspondent TCSPRBG. Such speed can be computed in
a similar way to 5, but in any case will obviously be bounded byT2 cycles/bit.

6.2 Crypto-analysis considerations

We have just started the study of the proposed system above, but we want to mention
some considerations for completeness.

We analyzed is how difficult it is to invertw; more precisely the problem is the
following:

- givenAi1 ⊕ ...⊕Ais , find the sequencer1||...||rs.

This problem does not correspond to the definition of partial inversion problem we give
(see def. 3.8) but it seems to us that its computational complexity is a good indicator
for the computational complexity of the partial inversion problem.

We observe that the choice of exactly one column of each block of length2h corre-
sponds to the addition of the following equation for each block:

∑

i∈block

xi = 1 (6)

xixj = 0 ∀i, j ∈ block (7)

The equations 6 are2l−h linear equations (one for each block) and 7 are2l−1(2h−1)
quadratic equations. We observe that the equations 7 are not independent. Equations
(7) can be replaced by the following minimal set of quadratic equations for each block:

xixj = 0 ∀i, j ∈ block : i+ j = 0 in GF (2) (8)

15



Equations 8 give that in a single block there is at most onexi equal to 1 when the index
i is odd and at most onexi equal to 1 when the index is even. Then the equation 6 gives
us that exactly onexi is equal to 1 for each block. The total number of equations 8 is
2l−1(2h−1 − 1). Therefore we get an MQ system with this particular structure:

- 2l unknowns;

- 2l−1 + 2l−h linear equations;

- 2l−1(2h−1 − 1) quadratic equations.

The best way to reduce the complexity of the system seems to us to use Gauss elimination
to possible eliminate2l−1 +2l−h unknowns we will then be left with a system with the
following structure:

- 2l−1 − 2l−h unknowns;

- 2l−1(2h−1 − 1) equations of second degree.

6.3 Three strategies to find the solution of the system

Now we want to illustrate three strategies to find the solution of our system. We assume
that we are left with the first2l−1 − 2l−h unknowns.

6.4 First strategy

A straightforward one is the following:

1. For each block of left unknowns we have to choice one variable to be put equal
to one. This gives2h(2

l−h−1−2l−h) possibilities.

2. To compute the other variables and verify if they too respect the equations 8; in
this case (very probably) this is the solution of the system;

3. Otherwise to go to step 1) until we find the solution.

For clarity, we consider the numerical example of the remark 6.1 . Ifn = 4096
andh = 6, the step 1) given2372 choices. The step 3) requires the xor of 61 words to
compute a number of unknowns equal to 32 (64 if the machine works in 64 bits).

It is very likely that the values of these first 32 unknowns do not respect the 8.
Therefore we can estimate,although not accurately, the expected time to find the solution
in 5, 9 · 10113 machine cycles.

6.5 Second strategy

The third strategy is consisted in solving the system applying the XL relinearization
algorithm by [17]. In the case of the numerical example of remark 6.1 this algorithm

produces a system of

(

3 968
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12

)

linear equations, obtaining a computational complexity of

(

3 968

12

)2,37

= 5, 7 · 1081. So this strategy seems to be the best one.

We insisted that the particular structure of equations 8 can speed up above strategies,
nevertheless the estimates seem to be quite reassuring.

6.6 Third strategy

Another possible strategy is to use linear equations to eliminate some of the variables
xi and derive the remainingxi by using quadratic equations. In this case we have 8192
unknowns and 4224 (4096+128) linear equations. Therefore we cane delete (most)
4224 unknown. We remain with 3968 unknown and64x63x64 quadratic equations.
We use the Brdet estimate. In this casek ≃ 65 andD ≃ 7.6. Let D=7 the estimate

operations number to solve the system is

(

3 968

7

)2,37

≃ 8.4 · 1050 that is less of the previous strategies.

6.7 Fourth strategy

Another strategy to solve the system is probabilistic type. More precisely we can fix
arbitrarily in each of the 128 blocks by 64 variables, 31 variables equal. Now we have
a sufficient number of equations to determinate all variables. It is easy to controll if

a variable is equal 1. The success probability is equal to

(

31
64

)128

= 1, 5 · 10−37 =

(6, 6) · 1036)−1.
If the computational cost of a single verification is104, we obtain a probability to

solve the system equal to≃ 1− 1/e with a computational complexity of6, 6 · 1040.
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